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VARIATIONAL PRINCIPLES FOR TWO-PHASE INFILTRATION 

INTO A DEFORMABLE MEDIUM 

P ,  A. Mazurov UDC 532.546 

Here a method is proposed of constructing dual variational principles for two-phase in- 
filtration into a deformable medium. The construction is based on variational treatments 
compiled for dissipative and elastic potentials, whose solutions are equivalent to the laws 
of behavior for the solid and liquid phases. The variational principles enable one to use 
the known porosity and saturation to determine the displacement and stress patterns in the 
solid phase and the pressure and velocity patterns in the liquid ones. In the case of two 
phases, we have variational principles for consolidation theory and two-phase infiltration. 

i. Consider two-phase infiltration into a viscoplastic medium. We write [I] the equa- 
tion of continuity for the solid phase 

(t  - -  m),~ + d ~  ( ( i  - -  m ) ~ )  = O; 

the equations of continuity for the liquid phase 

(1.1) 

the equilibrium equation 

(ms),t -.~ d i v ( r n s v l )  = O; 

( m ( t  - -  s)),t - i  d i v ( m ( l  - -  .s')v.,) = O; 

/ 
o i L J - - P J  ~ O; 

the relation between the pressures in the liquid phases 

(1.2) 

(i.3) 

(1.4) 

Pl -- P2 = Pc 

and the entropy production in the energy representation for T I = T 2 -- T 3 -- const [I]: 

y~ / p 
: csi~e~ -- q l " V P ~  -- q'-," VP2.  

(1.5) 

Here u is the vector for the solid-phase displacement; v I and v 2 the velocities of the liquid 
phases; m porosity; s saturation in the first phase; oijf the components of the tensor for 
the effective stresses of; p = spl + (i - s)p2 the mean pressure; Pl and P2 the pressures in 
the liquid phases; Pc = Pc (s) the capillary pressure step; eijP = (I/2)(ui, j + 9j,i) the com- 
ponents, of the tensor for the rates of the viscoplastic strain eP; ql = ms(vl--u), q2 =m(1-- 
s)(v 2 -- u) the phase infiltration rates; and TI, T2, T 3 the absolute temperatures in the phases. 

We introduce the symbols XI =--VPI, X2 =--VP2, Xs =~, Y~ =ql, Y~ = q~, Y3 =eP (X = (XI, 

X=, Xa) for the generalized forces and Y = (Y~, Ys, Y3) for the generalized velocities. To 
close system (1.1)-(1.5) we use the normal dissipation hypothesis [2, 3], on which there is 
a dissipation potential ~(Y) and a convex semicontinuous eigenfunctional from below such thai 
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X ~  0$(Y) ( 1 . 6 )  

{X is the subgradient of T(Y) at point Y). From (1.6) we have [3] the inverse relation 

Y ~ Or ( 1 . 7 )  

in which ~*(X) is the conjugate dissipation potential, which is related to ~(Y) by a Young- 
Fenchel transformation [4]. It has been shown [3] that the following assertions are equiva- 
lent: 

X'  ~ O~(Y'); ( 1 . 8 )  

~(Y) - -  X '  �9 Y ( 1 . 9 )  

produces the minimum with respect to Y at the point Y = Y'; 

y '  ~ 09*(X') ;  

r - -  X �9 Y'  

produces the minimum with respect to X at the point X = X'. 

Formulas (1.8)-(1.11) are the basis for the variational principles. 
dissipation consists of three independent dissipative mechanisms [2]: 

(i.lO) 

(i.ll) 

We assume that the 

~(Y) = ~1(ql) @ T2(q2) + Ta(ev); (I. 12) 

~*(X) = m~(Vpl) + m~(Vp:) § m~(o0. (i.13) 

Here Ti(.), r (i = i, 2) are the dissipative and conjugate dissipative potentials of the 
liquid phases [5], while ~3('), ~s(') are the dissipative and conjugate dissipative poten- 
tials for the viscoplastic skeleton [6]. We assume that the functionals ~(Y), ~*(X) are 
smooth: 

X = grad q~(Y), 

although the subsequent results are correct 
(1.7). Certain transformations based on (i. 

- -P~, i  = Oltrl(Ch) O(hi 

--P2,  i = Oqr2(q2)"Oq2i 

2. We construct a variational principle 
that the process (X ~ y0) actually occurring in 
determined from the solution to 

Y = grad q)*(X), (i. 14) 

for relations of the more general form (1.6) and 
12)-(1.14) convert (1.1)-(1.7) to 

or qli = - -Oq)I (V  Pl) /OPl, i ;  ( 1 . 1 5 )  

or (/21 = - -O~2(VP2) /OP2, i ;  ( 1 . 1 6 )  

or e~ = OQb.a((Tf)/O0~ j (1.17) 

~'&,:,j -- l),~ = 0;. (1.18) 

div(u -]- ql @ q2) = 0; (i. 19) 

Pl  - -  P2 = Pc; (1.20) 

m,t  = div((l -- re)u); ( i . 2 i )  

--(ms'), t = div(ql --  ;,nsu). ( 1 . 2 2 )  

on the variables 
region g will have the yo corresponding to X ~ 

u , q > q 2 ;  (1.8) and (1.9) imply 

inf B ~ (Y) = i,, r.i' I'~' (Y) - -  X~ Y] d.q. ( 2 . 1 )  
Y Y Q 

The result is unaltered if the functional BI~ is minimized with respect to the variables 
u, ql, q2- In that formulation, it is trivial to solve (2.1), since it is necessary to know 

~. We transform [X~ in such a way that the so- the forces X~, X~, X~ throughout region 

lution to (2.1) can be obtained simply from knowing X ~ at the boundary F of region ~. We 
get 

p ]o �9 
X~ = hI(- -ql"VP~176 -4- e i j G i j ) a Q = -  n'I ql"V(( t - - s ) p e ) a e  -4- 
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+ ,t %" g (sp~)d~ + !' 1]~ --  ,f q"p~ + S pO div (u + ql "6 q2)dQ, 
~ i ~ r Q 

in which qn = q~n + q2n is the normal component of the overall infiltration rate q = q~+q~; 
Hi = (~ - P6ij)" We have used (1.18) and (1.20), which are satisfied by the forces 

X~,X$,X~ Subject to (1.19) and 

0 
Ui == Ui on iF'u; (2.2) 

q,, = q,0 on Fq ( 2 . 3 )  

we pass from (2.1) to 

inf l l ( u  ' q~, %); (2./4) 
u,q 1 ,q, ,~ (1.19) ,(2. :2),(2,3} 

11 (u, 'h, %) = i[ [~tyl (q~) + qr2 (q2) + 'tra (er))] d~ + i' q" V ((t - -  s) p~) dr2 - -  i q," V (spe) dQ - -  f I]~u~dr + f' .q,~pOdV, 
h h v~ vv 

Pc + ['u ---- lr', Ft' q- Fq ---- F. ( 2 . 5 )  

As the variation 6It(u. ql, q=) 
(2.2), 
tions 

. 

is equal to zero subject to the constraints of (I.19), 
and (2.3), we have that system (1.15)-(1.20) is obeyed along with the boundary condi- 

Fli = 1]~ on ro: 
p = p0 on Fp, 

We construct a variational principle on the variables o f and p. 

( 2 . 6 )  

( 2 . 7 )  

It follows from 
(I.i0) and (I.Ii) that for the process (X ~ y0) actually occurring in region ~, the X ~ corre- 
sponding to y0 is defined by the solution to 

inf S~ (X) = inf i" [~* (X) -- X. YO 1 dQ. (3 .  i )  
x x 

The result is unaltered if the functional B=~ is minimized with respect to the variables 
~ Pz, P2, and we make the substitutions Pl = P + (i - s)Pc, p~ = p - spc , to get 

O/ ? = ~ B2~o.. Vp) j [ e l ( V ( p  + (t s)p~)) + OG(V(p--sp~)) + %(oS)lde+ 
,a ( 3 . 2 )  

+  (qO v p - 4 % ) d . o ,  vp) ..... Vp , Vp ) + 

We transform the last integral on the right in (3.2) to get 

! ' (q~  4 % ) d 9 -  ---- .f n ~ u ~ r - -  i q~pdr - -  i ; ~ ( o L ~ -  P,O ~ .  
r > h 

Here we have used (I.19), which is satisfied by the velocities YI, Y~, Ya. 
(2.6), and (2.7), we get from (3.1) that 

Subject to (I.18), 

inf 12 (u], p), ( 3 . 3 )  
O'],pE(1.18),(2.6) ,(2,7)  

in which 

I~ (as, p) _- f [% (v (p + (i - s) pc)) + % (v (p - ,pc)) + r  (a0l  d~  - -  
h (3.4) 

--  f IIiu~dlP + .f q~ 
f;, rq 

As the variation 612(of , p) is zero subject to the constraints (i.18), (2.6), and (2.7), it 
follows that system (1.15)-(1.20) is obeyed together with the boundary conditions (2..2) and 
(2.3). We have thus obtained the variational principles (2.4) and (3.3), which are equiva- 
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lent to solving the system (1.15)-(1.20) with the boundary conditions (2.2), (2.3), (2.6), 
(2.7) with given saturation and porosity patterns. 

4. We apply the duality method [4] to get 

inf I (u. q,,  q~) = sup [-- lz (o~, p)]. 
,q~,~ (1.~).(~.~),(~.~) ~]' p~O'~s)'(~'~)'(~'~) 

We t r a n s f e r  f r om t h e  ( 2 . 4 )  t r e a t m e n t  t o  t h e  one  d u a l  t o  i t  on one  o r  two v a r i a b l e s  t o  g e t  
s i x  min imax  t r e a t m e n t s  i n f s u p I i ( . ) ,  i = 3, 8. He re  we u s e d  t h e  b o u n d a r y  c o n d i t i o n s  

qan --= q~ q~n "-= q~ on rq.  ( 4 . 1 )  

The functionals Ii(.) (i = 3, 8) are derived in a somewhat different way. We put 

divq~----qh(r ,  t), div q~ = (9~(r, t), div u = q)~(r, t), ( 4 . 2 )  

and split up the minimization of (2.4) with respect to t h e  variables u, q~, q~: 

inf I, (u, q~, q~) = 

~,%,%~(~,~),(2.~),(~,~> (4.3) 
= inf J~ (q~) + inf J= ((h) § inf ]:~ (u). 

Here 

h fv 

s2 (q~) = i' [~ ,  (q.2 - -  q.,.V (~p~)l d~ + i' q~p0dr; 

h f~ 

The functionals J~(p), Js(P), J~(~f, P) in 

sup [--]~(p)l = in~ J~(qO, 
p~(2.~) q~(~.i),(~.-~) 

sup 
~],p~(1,1~),(2.6) 

sup [-- J5 (P)] = in[ 
p~(.,.7) q2~(~.1),(4.~) 

[ - -  J6 (~< P)] = inf Y~ (u) 

a'~ (q~), 

take the form 

]~ (p) = j ch (v (p + (t - s)p~)) d~ + ,t q%pdr -- .i" p~d~,  
r q  

.,'~ (p) = .[ r (v (p - sp~)) d.o. + f @,pdr -- ! p~dQ, 
fq 

J~(a*, p ) =  ( c~3(~OdQ-- i YI~u~dr--,I p~dP.. 

We introduce the L a g r a n g e  multiplier ~ = - p  to write the functionals: 

s'~ <q,, p / - -  ] ,  (qO - .I v (div ql - +11 d~, 

j t  ~ _ _  (q~, P) = J~ (%) I P (div q2 - -  %) dr], 

J~ (u, p) = J3 (u) - -  .[ p (div u - -  r d~. 

We combine the functionals Jz' , Jf', J~ , J~, Js~ J6 in such a way as to eliminate ~i, ~.~, 
and ~P3 to get the functionals li(') (i = i, 8). For example, the functional I~( u, p) is as 
follows in the variables u and p usually employed in numerical solution of problems in con- 
solidation theory: 
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and one has 

I~ (u, p) = J~ (u, p) - -  a'~ (p) - -  J~ (p) ---- [ [ - -  cD, (V (p + ( t  - -  s) p~)) - -  
h 

- -  (D, (V (p -- spc)) + ~F, (e")] df~ - -  ,[ p div udf~) - -  S Htu~dF - -  ,[ q".pdr, 
fl ro rq 

sup inf I~ (u, p) = inf  I~ (u, q~, q~). 
p~(2.7)uE(~,2) u,ql,q~ (l, 19),(2,2),(~,3) 

5. With linear infiltration laws 

qt  = kf] (s) 7 kf~ (s) 

we can express qt and q~ in terms of the overall velocity q and get the functional 

in which k is the absolute permeability; fz(s), f=(s) are the relative phase permeabilities; 
I 

~ and ~2 are viscosities ; and ~(s) -- f~(s) 4:- (~/~=)f~(s); T(s) = [ F (s) p~ (s) ds+spe (s); F (~) =f~ (s)/~p(s) is the 
3 

Buckley-Leverett function. 

The minimum in the functional f~(u, q) is attained on the actual velocity pattern ~, q 
subject to the constraints (1.19), (2.2), (2.3). The treatment dual to this variational 
treatment is one for the maximum in the functional [-I2(o f, p)], ioe., 

inf I~ (u, q) = sup I~ (crY, p) .  
u,q~(1.19),(2.2),(2.3) Gf,p~ (1.18),(2,6},(2.7) 

Here 
P 

-T T i' + + 
9 O. r u rq 

6. With F u = F, Fq = F, PC = 0 we have the form for ( 2 , 5 )  

I ,  (u, qt, q2) = Y [~, (q,) + ~2 (qa) + ~, (eP)l da. 
f l  (6.1) 

Then with W1(q0 =Dl(ql), ~F~(q~)=D~(q~), ~F3(e~) =D~(eP)(DI, D2, and D3 are dissipative func- 
tions), the actual process is determined by the minimum in the energy dissipation rate. 

We put as follows in (1.15)-(1.22) instead of (1.17) for two-phase infiltration in an 
elastic medium with small deformations: 

~: = oW,, (oOlacr~:, (~j = aw~ (e)fa~,  

in which W o and W E are' the elastic potentials and Eij are the components of the elastic- 
strain tensor. The functional that generalizes (6.1) is 

f [  W~(e(t))--Ws(8(t--At))] 11 (u, % q~) = .  ~ ,  (qO + ~ (q~) + At �9 dQ. ( 6 . 2 )  

This functional approximately characterizes the sum of the rates of energy accumulation and 
dissipation for ~i(qI) ----Da(q0, ~f~(q2) = D~(q2), In the general case, it is represented as 

/ , (u,  ql, q2) : ~[W1 (q,) + W'z (q~)+ 
Q 

w~ (e (t)) - -  W~ (e (t - -  at)) ] + J At 

+ j' q , . V  ((I - s) - j' q , . v  ( po)de - 
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y u i ( t ) -  u i(t --At~ f 
- -  II~ At ' dF + j q n P  ~ ( 6 . 3 )  

~ Pp 

One gets the solution to 
inf I~.(u, qD q2) ( 6 . 6 )  

subject to (2.2), (2,3), and 

div(  - u ( t ) -  u ( t -  AO ) At + q~ + q~ = 0 

on the actual pattern for the variables u, ql, q~. The dual variational principles are con- 
structed as in two-phase infiltration into a viscoplastic medium. One can construct various 
forms of numerical realization for such two-phase infiltration into an elastic medium. For 
example, instead of (6.3) one can use 

11 q~, q~, ) 

+ CZ [~g~ (q~) + ~2(q~) + q~'V ( (1 - -  sh) Pc) - ( 6 . 5 )  

- -  q~'V(s~P~)] dQ" + i q~p~ 
fq t 

where  a k = a ( t k ) ;  At k = t k - t k _ z ;  0 < a .< 1. The minimum h e r e  s u b j e c t  t o  ( 2 . 2 ) ,  ( 2 . 3 ) ,  and 

[ u~- uk-~ ] 

i s  a t t a i n e d  on t h e  a c t u a l  p a t t e r n  o f  t h e  v a r i a b l e s  u ~, q~, q~. 

7. A decoupling similar to (4.3) occurs in the case of an elastic skeleton in (6.4) 
and in other cases with various law of behavior for the individual phases. Constructing vari- 
ational principles amounts thus to constructing them for the individual phases. 

The (4.3) representation can be considered as a splitting into two tasks, one of which 
characterizes the strain and the other the two-phase infiltration. This indicates how to 
use existing formulations in the theory of deformable solids and the theory of two-phase in- 
filtration. 

One can incorporate changes in the porosity m and saturation s by means of (1.21) and 
(1.22). That approach is an extension of the algorithm for solving for two-phase infiltra- 
tion with separation with respect to the pressure and saturation. In the particular case of 
two phases, the variational principles for two-phase infiltration into a deformable medium 
give variational principles for consolidation and two-phase infiltration theory [7]. 
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